JBTALKS.CC

标题: Variable Valve Timing System 气门调节的认识,图片+video [打印本页]

作者: 3-SGTE    时间: 2009-7-6 10:55 PM
标题: Variable Valve Timing System 气门调节的认识,图片+video
Variable valve timing
Jump to: navigation, search
In internal combustion engines, variable valve timing, often abbreviated to VVT, is a generic term for an automobile piston engine technology. VVT allows the lift, duration or timing (some or all) of the intake or exhaust valves (or both) to be changed while the engine is in operation. Two-stroke engines use a power valve system to get similar results to VVT.
Contents[hide]

[edit] Overview
The i-VTEC system found in the Honda K20Z3


Piston engines normally use poppet valves for intake and exhaust. These are driven (directly or indirectly) by cams on a camshaft. The cams open the valves (lift) for a certain amount of time (duration) during each intake and exhaust cycle. The timing of the valve opening and closing is also important. The camshaft is driven by the crankshaft through timing belts, gears or chains.
The profile, or position and shape of the cam lobes on the shaft, is optimized for a certain engine revolutions per minute (RPM), and this tradeoff normally limits low-end torque, or high-end power. VVT allows the cam profile to change, which results in greater efficiency and power, over a wider rev-range.
At high engine speeds, an engine requires large amounts of air. However, the intake valves may close before all the air has been given a chance to flow in, reducing performance. On the other hand, if the cam keeps the valves open for longer periods of time, as with a racing cam, problems start to occur at the lower engine speeds. This will cause unburnt fuel to exit the engine since the valves are still open. This leads to lower engine performance and increased emissions. For this reason, pure racing engines cannot idle at the low speeds (around 800rpm) expected of a road car, and idle speeds of 2000 rpm are not unusual.
Pressure to meet environmental goals and fuel efficiency standards is forcing car manufacturers to turn to VVT as a solution. Most simple VVT systems advance or retard the timing of the intake or exhaust valves. Others (like Honda's VTEC) switch between two sets of cam lobes at a certain engine RPM. Furthermore Honda's I-VTEC can alter intake valve timing continuously.

[ 本帖最后由 3-SGTE 于 2009-8-10 11:52 PM 编辑 ]
作者: 3-SGTE    时间: 2009-7-6 10:56 PM
History

[edit] Steam engines
The first variable valve timing systems came into existence in the nineteenth century on steam engines. Stephenson valve gear, as used on early steam locomotives, supported variable cutoff, that is, changes to the time at which the admission of steam to the cylinders is cut off during the power stroke. Early approaches to variable cutoff coupled variations in admission cutoff with variations in exhaust cutoff. Admission and exhaust cutoff were decoupled with the development of the Corliss valve. These were widely used in constant speed variable load stationary engines, with admission cutoff, and therefore torque, mechanically controlled by a centrifugal governor and trip valves. As poppet valves came into use, simplified valve gear using a camshaft came into use. With such engines, variable cutoff could be achieved with variable profile cams that were shifted along the camshaft by the governor. [1].


[edit] Aircraft
Some versions of the Bristol Jupiter radial engine of the early 1920s incorporated variable valve timing gear, mainly to vary the inlet valve timing in connection with higher compression ratios.[1] The Lycoming R-7755 engine had a Variable Valve Timing system consisting of two cams that can be selected by the pilot. One for take off, pursuit and escape, the other for economical cruising.


[edit] Automotive use
Fiat was the first auto manufacturer to patent a functional automotive variable valve timing system which included variable lift. Developed by Giovanni Torazza in the late 1960s, the system used hydraulic pressure to vary the fulcrum of the cam followers (US Patent 3,641,988). The hydraulic pressure changed according to engine speed and intake pressure. The typical opening variation was 37%.

n September 1975, General Motors (GM) patented a system intended to vary valve lift. GM was interested in throttling the intake valves in order to reduce emissions. This was done by minimizing the amount of lift at low load to keep the intake velocity higher, thereby atomizing the intake charge. GM encountered problems running at very low lift, and abandoned the project.

Alfa Romeo was the first manufacturer to use a variable valve timing system in production cars (US Patent 4,231,330). The 1980 Alfa Romeo Spider 2.0 L had a mechanical VVT system in SPICA fuel injected cars sold in the United States. Later this was also used in the 1983 Alfetta 2.0 Quadrifoglio Oro models as well as other cars. The system was engineered by Ing Giampaolo Garcea in the 1970s.[2]

Honda's REV motorcycle engine employed on the Japanese market-only Honda CBR400F in 1983 provided a technology base for VTEC.

In 1987,[citation needed] Nissan developed their own form of VVT with the VG30DE(TT) engine for their Mid-4 Concept. Nissan chose to focus their NVCS (Nissan Valve-Timing Control System) mainly on torque production at low to medium engine speeds, because, the vast majority of the time, automobile engines will not be operated at extremely high speeds. The NVCS system can produce a smooth idle and high amounts of torque at low to medium engine speeds. The VG30DE engine was first used in the 300ZX (Z31) 300ZR model in 1987. It was the first production car to use electronically controlled VVT technology.

The next step was taken in 1989 by Honda with the VTEC system. Honda had started production of a system that gives an engine the ability to operate on two completely different cam profiles, eliminating a major compromise in engine design. One profile designed to operate the valves at low engine speeds provides good road manners, low fuel consumption and low emissions output. The second is a high lift, long duration profile and comes into operation at high engine speeds to provide an increase in power output. The VTEC system was also further developed to provide other functions in engines designed primarily for low fuel consumption. The first VTEC engine Honda produced was the B16A which was installed in the Integra, CRX, and Civic hatchback available in Japan and Europe. In 1991 the Acura NSX powered by the C30A became the first VTEC equipped vehicle available in the US. VTEC can be considered the first "cam switching" system and is also one of only a few currently in production.

In 1991, Clemson University researchers patented the Clemson Camshaft which was designed to provide continuously variable valve timing independently for both the intake and exhaust valves on a single camshaft assembly. This ability makes it suitable for both pushrod and overhead cam engine applications.[3]

In 1992 BMW introduced the VANOS system. Like the Nissan NVCS system it could provide timing variation for the intake cam in steps (or phases), the VANOS system differed in that it could provide one additional step for a total of three. Then in 1996 the Double Vanos system was introduced which significantly enhances emission management, increases output and torque, and offers better idling quality and fuel economy. Double Vanos was the first system which could provide electronically controlled, continuous timing variation for both the intake and exhaust valves. In 2001 BMW introduced the Valvetronic system. The Valvetronic system is unique in that it can continuously vary intake valve lift, in addition to timing for both the intake and exhaust valves. The precise control the system has over the intake valves allows for the intake charge to be controlled entirely by the intake valves, eliminating the need for a throttle valve and greatly reducing pumping loss. The reduction of pumping loss accounts for more than a 10% increase in power output and fuel economy.

Ford began using Variable Cam Timing in 1998 for Ford Sigma engine. Ford became the first manufacturer to use variable valve timing in a pickup-truck, with the top-selling Ford F-series in the 2004 model year. The engine used was the 5.4L 3-valve Triton.

In 2005 General Motors offered the first Variable Valve timing system for pushrod V6 engines, LZE and LZ4.

In 2007 DaimlerChrysler became the first manufacturer to produce a cam-in-block engine with independent control of exhaust cam timing relative to the intake. The 2008 Dodge Viper uses Mechadyne's concentric camshaft assembly to help boost power output to 600 bhp (450 kW).

In 2009 Fiat Powertrain Technologies introduced the Multiair system in Geneva Motor Show. The Multiair is a hydraulically-actuated variable valve timing system, which gives full control over valve lift and timing. The new technology will be available in Alfa Romeo MiTo starting from September 2009.[4]
作者: 3-SGTE    时间: 2009-7-6 10:56 PM
[edit] VVT Implementations
Aftermarket Modifications - Conventional hydraulic tappet can be engineered to rapidly bleed-down for variable reduction of valve opening and duration.
Alfa Romeo

Twin Cam - some versions are equipped with Variable Valve Timing technology.
Twin Spark - is equipped with Variable Valve Timing technology.
JTS - is equipped with Variable Valve Timing technology, both intake and exhaust.
Multiair continuously varies the timing of the inlet valve by changing oil pressure.
BMW

Valvetronic - Provides continuously variable lift for the intake valves; used in conjunction with Double VANOS.
VANOS - Varies intake timing by rotating the camshaft in relation to the gear.
Double VANOS - Continuously varies the timing of the intake and exhaust valves.
Fiat

"StarJet" FIRE-based engine.

Ford

VCT Variable Cam Timing - Varies valve timing by rotating the camshaft.
Ti-VCT Twin Independent Variable Camshaft with two fully variable camshafts used in Ford Sigma engine and Ford Duratec engine.
Chrysler - Varies valve timing through the use of concentric camshafts developed by Mechadyne enabling dual-independent inlet/exhaust valve adjustment on the 2008 Dodge Viper.
General Motors Corporation (GM)
VVT - Varies valve timing continuously throughout the RPM range for both intake and exhaust for improved performance in both overhead valve and overhead cam engine applications.(See also Northstar System).
DCVCP (Double Continuous Variable Cam Phasing) - Varies intake and exhaust camshaft timing continuously with hydraulic vane type phaser (see also Ecotec LE5).
Alloytec - Continuously variable camshaft phasing for inlet cams. Continuously variable camshaft phasing for inlet cams and exhaust cams (High Output Alloytec).

Honda

VTEC - Varies duration, timing and lift by switching between two different sets of cam lobes.
VTEC-E - This system is designed solely for the purpose of improving fuel economy. A variation of the VTEC mechanism is used to create an offset of lift between the two intake valves, one valve opening only slightly to prevent accumulation of fuel in the intake port. The asymmetrical opening of the intake valves creates a powerful swirl in the combustion chamber and allows for a very lean intake charge to be used under certain conditions. Under normal operation the two intake valve rocker arms are locked together and both valves follow the normal lift cam profile.
i-VTEC - In high-output DOHC 4 cylinder engines the i-VTEC system adds continuous intake cam phasing (timing) to traditional VTEC. In economy oriented SOHC and DOHC 4 cylinder engines the i-VTEC system increases engine efficiency by delaying the closure of the intake valves under certain conditions and by using an electronically controlled throttle valve to reduce pumping loss. In SOHC V6 engines the i-VTEC system is used to provide Variable Cylinder Management which deactivates one bank of 3 cylinders during low demand operation.
Advanced VTEC - This is the latest Honda VVT system and is the most unique of all the VTEC systems. Rather than switching between cam lobes the Advanced VTEC system uses intermediate rocker arms with a variable fulcrum to continuously vary intake valve timing, duration and lift.
Hyundai

MPI CVVT - Varies power, torque, exhaust system, and engine response.
Kawasaki
- Varies position of cam by changing oil pressure thereby advancing and retarding the valve timing, 2008 Concours 14.
Lexus

VVT-iE - Continuously varies the intake camshaft timing using an electric actuator.
Mazda

S-VT - Continually varies intake timing and crank angle using an oil control valve actuated by the ECU to control oil pressure.
Mitsubishi

MIVEC - Varies valve timing, duration and lift by switching between two different sets of cam lobes. The 4B1 engine series uses a different variant of MIVEC which varies timing (phase) of both intake and exhaust camshafts continuously.

Nissan

N-VCT - Varies the rotation of the cam(s) only, does not alter lift or duration of the valves.
VVL - Varies timing, duration, and lift of the intake and exhaust valves by using two different sets of cam lobes.
CVTC introduced with the HR15DE, HR16DE, MR18DE and MR20DE new engines in September 2004 on the Nissan Tiida and North American version named Nissan Versa (in 2007); and finally the Nissan Sentra (in 2007).
VVEL introduced with the VQ37VHR Nissan VQ engine engine in 2007 on the Infiniti G37.

Porsche

VarioCam - Varies intake timing by adjusting tension of a cam chain.
VarioCam Plus - Varies intake valve timing by rotating the cam in relation to the cam sprocket as well as duration, timing and lift of the intake and exhaust valves by switching between two different sets of cam lobes.

Proton Campro CPS

- Varies intake valve timing and lift by switching between 2 sets of cam lobes without using rocker arms as in most variable valve timing systems. Debuted in the 2008 Proton Gen-2 CPS[5][6] and the 2008 Proton Waja CPS.
PSA Peugeot Citroën
CVVT - Continuous variable valve timing.

Renault
Clio 182, Clio Cup and Clio V6 Mk2 VVT - variable valve timing.

Rover
VVC - Varies timing with an eccentric disc.

Suzuki
- VVT - Suzuki M engine

Subaru
AVCS
- Varies timing (phase) with hydraulic pressure, used on turbocharged and six-cylinder Subaru engines.
AVLS - Varies duration, timing and lift by switching between two different sets of cam lobes (similar to Honda VTEC). Used by non-turbocharged Subaru engines.

Toyota

VVT - Toyota 4A-GE 20-Valve engine introduced VVT in the 1992 Corolla GT-versions.
VVT-i - Continuously varies the timing of the intake camshaft, or both the intake and exhaust camshafts (depending on application).
VVTL-i - Continuously varies the timing of the intake valves. Varies duration, timing and lift of the intake and exhaust valves by switching between two different sets of cam lobes.

Volkswagen

Group - VVT introduced with later revisions of the 1.8t engine, and the 30v 2.8l V6. Similar to VarioCam, the intake timing intentionally runs advanced and a retard point is calculated by the ECU. A hydraulic tensioner retards the intake timing. Most modern VW Group petrol engines now include VVT on either the inlet cam, or both inlet and exhaust cams, as in their V6, V8 and V10 engines.

Volvo

- CVVT

Yamaha

- VCT (Variable Cam Timing) Varies position of cam thereby advancing and retarding the valve timing.

Proton

- VVT introduced in the Waja 1.8's F4P renault engine (toyota supplies the VVT to renault)

[ 本帖最后由 3-SGTE 于 2009-7-6 11:05 PM 编辑 ]
作者: 3-SGTE    时间: 2009-7-6 10:57 PM
An Imagery of the i-VTEC Implementation

EGR Effect: By swirling back some of the exhaust air back into the combustion chamber, combustion temperature is lowered, and NOx output is reduced.






作者: 3-SGTE    时间: 2009-7-6 11:13 PM







[youtube]6AXh8O7hWU4&feature[/youtube]
[youtube]MR63IrKHv7E&feature[/youtube]
[youtube]4AQgiAulFcM&feature[/youtube]
[youtube]AcT_ZyY3F0k&feature[/youtube]
[youtube]RE5Tx47-b24&feature[/youtube]
[youtube]zW8rub-yuZQ&feature[/youtube]
[youtube]ICAWQPLNFAc&feature[/youtube]
[youtube]mgDdbrMh6bo&NR[/youtube]
[youtube]BWsRSfe7K4M&feature[/youtube]
[youtube]_oE0iRR5BTA&feature[/youtube]

[ 本帖最后由 3-SGTE 于 2009-7-7 10:50 PM 编辑 ]
作者: 毛毛小子    时间: 2009-7-6 11:21 PM
VTEC的HEAD哦 哈哈 好料哦
作者: 3-SGTE    时间: 2009-7-6 11:33 PM
[table=100]
More...

[/td][td]
Information
Valvetronic engines use a combination of hardware and software to eliminate the need for a conventional throttle mechanism.
Valvetronic varies the timing and the lift of the intake valves. The Valvetronic system has a conventional intake cam, but it also uses a secondary eccentric shaft with a series of levers and roller followers, activated by a stepper motor. Based on signals formerly taken mechanically from the accelerator pedal, the stepper motor changes the phase of the eccentric cam, modifying the action of the intake valves.
Valvetronic was introduced on the all-alloy 1.8-liter, 4-cylinder engine for the E46 316ti Compact, and it will subsequently be applied to most eight and 12-cylinder engines within a few years. The new E65 7 Series has Valvetronic engines.
The Valvetronic engine replaces the function of the throttle butterfly by using an infinitely variable intake valve lift. The Valvetronic engine does not require a timing belt or chain. Valvetronic has its own computer housed in a separate unit away from the engine management system, networked with the digital engine management system incorporating a 40-megahertz, 32-bit computer.
A unique set of images from BMW showing how Valvetronic was designed.
Click for a larger image
Valvetronic reduces maintenance costs, improves cold start behavior, lowers exhaust emissions, and provides a  smoother running engine. Valvetronic does not need specific fuel grades or fuel qualities because of its fine atomization of fuel.
The entire Valvetronic system is pre-assembled and inserted as a module into its position in the cylinder head. Valvetronic engines are built at BMW's brand new engine plant at Hams Hall near Coventry, England.
Because Valvetronic allows the engine to breathe more freely, fuel consumption is reduced by 10%. The fuel savings are greatest at lower engine revs. Valvetronic is an important element in BMW's aim of meeting the 2008 carbon dioxide fleet requirements of 140 gm/km.
[/td][/tr][tr][td=1,1,120]
V-8

[/td][td]
Here's how it works:
Fuel injection systems monitor the volume of air passing through the throttle butterfly and determine the corresponding amount of fuel required by the engine. The larger the throttle butterfly opening, the more air enters the combustion chamber.  
At light throttle, the throttle butterfly partially or even nearly closes. The pistons are still running, taking air from the partially closed intake manifold. The intake manifold between the throttle and the combustion chamber has a partial vacuum, resisting the [词语过滤-#17]ing and pumping action of the pistons, wasting energy. Automotive engineers refer to this phenomenon as "pumping loss". The slower the engine runs, the more the throttle butterfly closes, and the more energy is lost.
Valvetronic minimizes pumping loss by reducing valve lift and the amount of air entering the combustion chambers.
Compared with conventional twin-cam engines with finger followers, Valvetronic employs an additional eccentric shaft, an electric motor and several intermediate rocker arms, which in turn activates the opening and closing of valves. If the rocker arms push deeper, the intake valves will have a higher lift, and vice-versa. Thus, Valvetronic has the ability to get deep, long ventilation (large valve lift) and flat, short ventilation (short valve lift), depending on the demands placed on the engine.
Operating Parameters:
Additional Benefits:
The efficiency of Valvetronic engines drop rapidly at over 6,000 rpm since stronger valve springs are required. The stronger springs create higher friction losses. Don't expect to see Valvetronic in the "M" series engines any time soon.
[/td]
<

[ 本帖最后由 3-SGTE 于 2009-7-6 11:50 PM 编辑 ]
作者: 3-SGTE    时间: 2009-7-6 11:34 PM
What is MIVEC?
In the early ‘90s, Mitsubishi Japan introduced a valve control system to combat Honda’s VTEC design. This system is labelled MIVEC (Mitsubishi Innovative Valve and Lift Electronic Control System).

In its simplest form, MIVEC switches between two different intake and exhaust cam lobes depending on engine rpm. At low rpm, the valves receive relatively modest lift and opening duration. At high rpm, the secondary cam lobe is engaged and the valves receive greater lift and duration (which results in increased overlap).
The purpose of the secondary cam lobe is to deliver greater engine breathing and the ability to maintain torque at very high rpm (which means greater power). The MIVEC system achieves its high power without the driveabililty, fuel consumption and emissions trade-offs typical in a conventional engine.
In addition to the base MIVEC principle, Mitsubishi also released a sophisticated MIVEC-MD (Modular Displacement) system in the ‘90s.

The MD system is an early form of cylinder deactivation which involves closing the intake and exhaust valves at light engine load. This means the driver must open the throttle further to maintain power and, as a result, pumping losses are reduced and active cylinder pressures are increased. This results in greater efficiency and fuel economy.
Depending on conditions, the MIVEC-MD system can reduce fuel consumption by 10 – 20 percent.


[ 本帖最后由 3-SGTE 于 2009-7-11 10:23 AM 编辑 ]
作者: 毛毛小子    时间: 2009-7-6 11:35 PM
标题: 回复 #8 3-SGTE 的帖子
我对车没有什么研究,经过来看看而已
作者: 3-SGTE    时间: 2009-7-6 11:36 PM
HOME > Corporate Info > About Us > Technology > Driving Fun > MIVEC


MIVECRemarkable MIVEC Engine makes power performance and environmental protection compatible
MIVEC = Mitsubishi Innovative Valve timing Electronic Control system
The dual-intake valve camshaft enables changing between low-speed and high-speed modes, resulting in easy operation from low to high rpms, improving the driving experience when starting from a stop light, merging onto the freeway, or accelerating to overtake another car. In the pursuit of pure driving enjoyment, potentially incompatible goals like fuel economy, environment-friendliness, and clean driving have all been achieved. [Low-speed Mode]
The difference in the dual-intake valve lift (low lift and medium lift) and enhanced in-cylinder streaming further stabilize combustion without compromising fuel economy, emissions, and torque.
[High-speed Mode]
Extending the injection valve opening time and expanding the valve lift range increases intake air mass and achieves output close to best in class.
The Grandis is equipped with the 2.4L MIVEC and the Colt is equipped with with the 1.3 and 1.5L MIVEC.




4G69 MIVEC
(2.4L SOHC 16-valve, 4-cylinder)
(Grandis)



MIVEC Switching Mechanism

Grandis


MIVEC Engine Performance Curve (4G69)




[ 本帖最后由 3-SGTE 于 2009-7-11 10:06 AM 编辑 ]
作者: ckerz    时间: 2009-7-7 10:19 AM
气门扬程和开启时间技术,最喜欢的还是VANOS。谢谢分享。
作者: vin_jovin    时间: 2009-7-7 01:31 PM

全部红毛字。。。

作者: 3-SGTE    时间: 2009-7-7 05:35 PM
Nissan VVL engines
Nissan SR20VE engineDisplacement2.0LPower:187 hp (139 kW)Torque:145 lb·ft (197 N·m)Production:1997-2001Vehicle:Nissan Primera
Nissan Bluebird
Nissan Wingroad
Nissan SR16VE engineDisplacement1.6LPower:173 hp (129 kW)Torque:119 lb·ft (161 N·m)Production:1997-2001Vehicle:Nissan Sunny VZ-R
Nissan Lucino VZ-R
Nissan Pulsar VZ-R
Nissan SR20VE '20V' engineDisplacement2.0LPower:204 hp (152 kW)Torque:152 lb·ft (206 N·m)Production:2001-PresentVehicle:Nissan Primera 20V
Nissan SR20VET engineDisplacement2.0LPower:276 hp (206 kW)Torque:228 lb·ft (309 N·m)Production:2001-presentVehicle:Nissan X-Trail GTNissan Ecology Oriented Variable Valve Lift and Timing (commonly known as VVL) is an automobile variable valve timing technology developed by Nissan. VVL varies the timing, duration, and lift of valves by using hydraulic pressure switch between two different sets of camshaft lobes. It functions similarly to Honda's VTEC system.
The SR20VE is the most common engine with NEO VVL. There have been two main versions of this engine. The first version made 187 hp (139 kW) and 145 lb·ft (197 N·m) torque. This engine was used by Nissan from 1997 to 2001. It is found in the Nissan Primera, Nissan Bluebird, and the Nissan Wingroad.
The second variant of the SR20VE is found only in the 2001 and up, P12 Nissan Primera. This version of the SR20VE makes 204 hp (152 kW), and 152 lb/ft torque. This engine is commonly known as the SR20VE '20V'. Although, in automotive terms, '20V' would normally be interpreted as having twenty valves, this is incorrect. The name '20V' is the name of the trim level of the Nissan Primera that it is found in. It is also a shortened version of the name SR20VE. This engine has 16 valves like the rest of the SR20 engines. This newer '20V' engine, is the only SR20 engine to get a restyled valve cover. It also has an upgraded intake manifold, which has longer runners and a larger 70 mm (2.8 in) throttle body (earlier SR20VE has 60 mm).
Another version of the VVL SR engines, is the 1.6L SR16VE. The engine block for the SR16VE is the same as the SR20VE, it also has the same cylinder bore. The crankshaft has a shorter stroke, which lowers the displacement, but allows the engine to safely rev to higher RPM. Although this engine has 1.6L of displacement, it has more aggressive camshaft specifications. It manages to make 173 hp (129 kW). The camshafts from this engine are considered to be an upgrade for SR20VE owners.
From 1997 to 1998, Nissan produced 500 limited edition SR16VE N1 engines. These engines made 197 hp (147 kW). They had further upgraded camshafts, upgraded intake manifold untilising 8 injectors and a larger 70 mm (2.8 in) throttle body. These engines were found in the limited edition Nissan Pulsar VZ-R N1. They were only sold in Japan.
The most powerful VVL engine so far, is the SR20VET. The SR20VET is a turbocharged '20V' SR20VE. It uses a Garrett GT2560R turbo charger, and makes 280 PS (206 kW; 276 hp) . Nissan's technical information about this engine states that it is 9:1 compression ratio, but it really adds up to 8.8:1.[citation needed] Compaired to the SR20DET (used in the Nissan Silvia, and Bluebird), the SR20VET (aside from having VVL technology) has improved airflow in the cylinder head, higher compression, and also improved coolant passages.
One difference from Honda's VTEC system, is that NEO VVL engages the change of intake and exhaust cams independently for a flatter, more consistent power band. On the SR20VE the intake camshaft is switched at 5000 rpm, and the exhaust at 6500 rpm. However this trait was not included on the newer '20V' version, as both camshafts

[ 本帖最后由 3-SGTE 于 2009-7-12 12:44 AM 编辑 ]
作者: 3-SGTE    时间: 2009-7-7 05:35 PM
SUBARU (AVCS)

A balance between increasing engine performance, improving fuel economy, reducing emissions and stabilizing idle is difficult to achieve. In its 3.0-liter 6-cylinder and turbocharged 2.5-liter 4-cylinder engines, Subaru strikes that balance using the Active Valve Control System (AVCS).

What AVCS Does and Its Effects
Pulling the connecting rod, the crankshaft pulls the piston toward the center of the engine, drawing in air and fuel from the intake system. The air and fuel enters the cylinder through the intake ports opened by the intake valves. This is like a person taking a breath – inhaling. AVCS adjusts exactly when intake valves begin to open.
With both valves closed, the turning crankshaft forces up the piston, compressing the air/fuel mixture.
The spark plug ignites this compressed mixture, causing an explosion that forces down the piston and connecting rod, which, in turn, rotates the crankshaft. These explosions within the cylinders provide the engine’s power.
The crankshaft forces the piston to the top of the cylinder again, this time pushing leftover gases out of the combustion chamber past the opened exhaust valves and into the exhaust system. This is similar to a person exhaling.

The camshaft is a very precise engine component, with lobes that open and close the intake and exhaust valves with the critical timing required for the 4-stroke cycle. AVCS changes the timing of the intake valves by adjusting the positions of the camshafts based on inputs from various sensors in the powertrain. The system varies when the camshaft lobes open and close the intake valves during the 4-stroke cycle.

The effects of variable valve control include greater power through a wider range of engine speeds, improved fuel economy and reduced emissions. But to better understand how it works, let’s start with engine basics – the 4-stroke engine cycle.

The 4-Stroke Cycle

Most of today’s automotive gasoline engines function via a 4-stroke cycle. Engine components continuously cycle through four strokes, named for their functions of intake, compression, power and exhaust.

AVCS affects the roles of the camshafts in this process. Actuation is mechanical, by direct contact or through a combination of lifters, tappets and/or pushrods, depending on engine design. How the camshafts are designed essentially gives engines their personalities.

Camshafts in Subaru engines are belt-driven (4-cylinder) or chain-driven (6-cylinder) by the crankshaft. Intake valves open to let the air into the combustion chamber, and exhaust valves open to let out the exhaust gases. AVCS operation affects the intake valve timing or at exactly what point each valve opens and closes.

Overall, intake- and exhaust-valve operation during the 4-stroke cycle follows this pattern:



However, there are nuances in operation, and that’s where AVCS plays a part.

In the 4-stroke sequence, the exhaust cycle immediately precedes the intake cycle. Overlapping the timing of the closing of the exhaust valves and the opening of the intake valves can help the engine perform better under heavy loads, but not under light loads. AVCS continuously varies this overlap through an infinite number of positions. Overlap ranges between a slight overlap (“retard” position) through as much as 35 degrees of the crankshaft rotation (“advance” position).

AVCS Components

Variable valve timing is controlled through a hydraulic system that takes instruction from a system of electronic controls.

Engine management computer: Electronic control is by the engine management computer, which uses input from a number of engine sensors to determine the ideal position for the camshafts. The sensors include those that measure airflow into the intake system, coolant temperature, throttle position and camshaft position.

Oil control valve: The control unit then actuates changes through an oil control valve positioned at each intake camshaft sprocket. The oil control valve uses oil pressure from the engine to advance and retard the intake camshafts via the AVCS actuator.

Actuator: Mounted in the chain- or belt-driven drive sprocket, the actuator is fitted directly to the camshaft. Chambers in the actuator allow oil pressure to advance or retard it within the timing-belt sprocket. The oil fills the chambers and pushes against three lobes to turn the actuator and the camshaft on its axis.

AVCS – Bringing It All Together

At idle: The intake valves open just after the piston reaches the top of the cylinder (called “top dead center” or TDC; BDC refers to “bottom dead center”) at the end of the exhaust stroke, as the piston begins the intake stroke. The exhaust stroke creates negative pressure within the chamber, and intake air enters the cylinder with positive pressure “to fill the void.” There is very little or no overlap between the exhaust and the intake strokes.



Retarding valve timing improves the smoothness of engine operation at idle, which tends to be a problem area in high-performance engines without variable valve control. (If you remember the muscle cars of the 1960s and 1970s, you may recall how roughly they idled.)


[ 本帖最后由 3-SGTE 于 2009-7-12 12:57 AM 编辑 ]
作者: ckerz    时间: 2009-7-7 05:54 PM
VANOS工作构造省略,不如其它技术复杂,但可变扬程时间多。搭载这个技术的V12(如mclaren f1)和V8(如M3 GTR),它们的实力应该不需要说了吧...em0012
作者: 3-SGTE    时间: 2009-7-7 05:57 PM


At light-to-medium engine loads: From idle through medium engine loads, AVCS advances the intake valves to begin opening during the last part of the exhaust stroke, when the exhaust valves are still slightly open. Some of the pressure created during the exhaust stroke flows into the intake manifold, having the effect of exhaust gas recirculation (EGR). The intake valves also close earlier during the intake stroke.



Advancing valve timing for some overlap helps reduce the level of harmful oxides of nitrogen in the exhaust. It also improves volumetric efficiency, which is an indication of how well air flows through the engine. The greater the efficiency, the stronger the engine’s performance.

At heavy engine loads: When the engine is used aggressively for greatest performance, AVCS advances the intake valves further to open even sooner during the exhaust stroke. This produces a scavenging effect – that is, intake airflow helps clear the cylinder of exhaust gas. It also closes the intake valves sooner on the compression stroke.



This results in improved volumetric efficiency and helps to generate higher power output.

Overall, varying valve timing helps the engine to develop power more evenly between low and high speeds. At the same time, it improves engine idle and lowers exhaust emissions.

Thoroughly Modern AVCS

AVCS contributes to the driveability and performance of many Subaru engines. It provides greater power, smoother operation and fewer harmful emissions through a thoroughly modern engine technology.


[ 本帖最后由 3-SGTE 于 2009-7-12 12:58 AM 编辑 ]
作者: ckerz    时间: 2009-7-7 06:05 PM
标题: 回复 #16 3-SGTE 的帖子
过奖了,大家互相学习。em0001
作者: 3-SGTE    时间: 2009-7-7 06:09 PM
原帖由 ckerz 于 2009-7-7 06:05 PM 发表
过奖了,大家互相学习。em0001

我想放video可是放不到。你会吗em0010
作者: ckerz    时间: 2009-7-7 06:14 PM
标题: 回复 #18 3-SGTE 的帖子
youtube的吗?
作者: 3-SGTE    时间: 2009-7-7 06:15 PM
原帖由 ckerz 于 2009-7-7 06:14 PM 发表
youtube的吗?

对咯。。。不会玩
作者: ckerz    时间: 2009-7-7 06:18 PM
标题: 回复 #20 3-SGTE 的帖子
好像网址是 http://www.youtube.com/watch?v=sV3gD6LF5xM 你只需要copy sV3gD6LF5xM就好。
作者: 3-SGTE    时间: 2009-7-7 06:19 PM
原帖由 ckerz 于 2009-7-7 06:18 PM 发表
好像网址是 http://www.youtube.com/watch?v=sV3gD6LF5xM 你只需要copy sV3gD6LF5xM就好。

em0068 em0068 谢谢我试试
作者: ckerz    时间: 2009-7-7 06:21 PM
应该是这样,我放一个看。
[youtube]sV3gD6LF5xM[/youtube]
作者: 3-SGTE    时间: 2009-7-7 06:40 PM
原帖由 ckerz 于 2009-7-7 06:21 PM 发表
应该是这样,我放一个看。
sV3gD6LF5xM

可以了我弄到了
作者: uchihajim    时间: 2009-7-7 11:25 PM
我来捣蛋咯
作者: uchihajim    时间: 2009-7-7 11:27 PM
Variable valve timing
Jump to: 航海,查寻在内燃机,易变的阀定时,经常被省略对VVT,是汽车活塞引擎技术的一个一般术语。 VVT允许推力、期间或者时间(一些或所有)将被改变的)入口或排气门(或两个,当引擎运转中时。 二冲程发动机使用力量阀门系统有近似结果VVT。

活塞引擎为入口和尾气通常使用提动阀。 这些被在凹轮轴的凸轮驾驶(直接或间接地)。 凸轮打开阀门(推力)一定数量的时间(期间)在每个入口和尾气周期期间。 阀门开头和结束的时间也是重要的。 凹轮轴被曲轴驾驶通过同步皮带、齿轮或者链子。外形或者凸轮耳垂的位置和形状在轴,为某些引擎转每分钟被优选(RPM),并且这种交易通常限制低价的扭矩或者高端力量。 VVT允许凸轮外形改变,导致更加巨大的效率和力量,在一个更宽的加快转速范围。以高发动机速度,引擎要求很多空气。 然而,进气阀也许关闭,在给了所有空气一个机会注入之前,减少表现。 在另一只手上,如果凸轮保持阀门开放在更长的时期,与一个赛跑的凸轮,问题开始发生以更低的发动机速度。 因为阀门是开放的,这将造成未烧的燃料退出引擎。 这带领降低发动机性能和增加的放射。 为此,纯净的赛跑的引擎不可能虚度光阴以低速度(在800rpm附近)期望路汽车,并且2000转每分钟的空转速度不是异常的。压力符合环境目标和燃料效率标准强迫汽车制造商转向VVT作为解答。 多数简单的VVT系统推进或减速入口或排气门的时间。 其他(象Honda' 在二套的s VTEC)开关在某些发动机每分钟转数的凸轮耳垂之间。 此外Honda' s I-VTEC可能连续地修改进气阀时间。

帮你翻译翻译下,不正确请见谅...em0012
作者: uchihajim    时间: 2009-7-7 11:31 PM
历史 [编辑]蒸汽引擎第一个易变的阀定时系统在蒸汽引擎的19世纪进入了存在。 Stephenson阀门齿轮,如使用在早期的蒸汽机车,支持易变的切除,即,对蒸汽入场对圆筒的被切除的时间的变动在动力冲程期间。 对易变的切除的早方法结合了在入场切除上的变化与在尾气切除上的变化。 入场和尾气切除分离了与Corliss阀门的发展。 这些是用途广泛在匀速易变的装载固定发动机,当入场切除并且扭矩,控制的是机械上由一个离心式传感器和旅行阀门。 当提动阀进入了用途,使用凹轮轴的被简化的阀门齿轮进入了用途。 使用这样引擎,易变的切除可能达到与沿凹轮轴被转移由州长的易变的外形凸轮。 [1]。 [编辑]航空器 20年代初期的布里斯托尔木星星形发动机的有些版本合并易变的阀定时齿轮,主要变化吸入阀时间与更高的压缩比相关。[1] Lycoming R-7755引擎有一个易变的阀定时系统包括可以由飞行员选择的二个凸轮。 一个人为离开,追求和逃命,其他经济巡航的。 [编辑]汽车用途菲亚特是给予专利包括的易变的推力的一个功能汽车易变的阀定时系统的第一个汽车制造厂。 开发由Giovanni ・ Torazza在20世纪60年代末期,系统使用了液压变化凸轮随动件(美国专利3,641,988)的支点。 液压根据发动机速度和进气压力改变了。 典型的开头变异是37%。 n通用汽车公司9月1975年, (GM)给予了专利意欲的一个系统变化阀门推力。 GM是对节流进气阀感兴趣为了减少放射。 这由使在低装载的推力减到最小保持入口速度完成更高,从而雾化入口充电的相当数量。 GM遇到问题跑在非常低推力,并且放弃了项目。 阿尔法罗密欧是使用一个易变的阀定时系统的第一位制造商在生产汽车(美国专利4,231,330)。 1980年阿尔法罗密欧蜘蛛2.0升有一个机械VVT系统在美国卖的角宿燃料被注射的汽车。 这也以后用于1983年Alfetta 2.0 Quadrifoglio Oro模型并且其他汽车。 系统由Ing 20世纪70年代的Giampaolo Garcea设计。[2] Honda' s REV在日本市场只使用的摩托车引擎在1983的本田CBR400F上为VTEC提供了一个技术基础。 在1987年, [需要的引证]日产开发了他们VVT的自己的形式与VG30DE (TT)引擎的他们的中间4概念的。 日产选择集中他们的NVCS (日产阀门时间控制系统)主要于扭矩生产在低落到中等发动机速度,因为,绝大多数的时间,汽车引擎不极端将被管理在高速。 NVCS系统可能导致一个光滑的无所事事和金额上限扭矩在低落到中等发动机速度。 VG30DE引擎首先用于300ZX (Z31)在1987年300ZR模型。 它是使用电子上受控制VVT技术的第一辆生产汽车。 下一个步骤在1989年采取了由与VTEC系统的本田。 本田开始了给引擎能力起作用二完全不同的凸轮外形系统的生产,消灭在引擎设计的主要妥协。 一外形设计操作阀门以低发动机速度提供好路方式、低燃料消费和低放射产品。 第二是高举,长的期间外形并且进入操作以高发动机速度提供在功率输出的增量。 也更加进一步被开发的VTEC系统主要为低燃料消费提供在被设计的引擎的其他作用。 第一个VTEC引擎被生产的本田是在Integra、CRX和民事斜背式的汽车被安装可利用在日本和欧洲的B16A。 在1991 C30A NSX供给动力的Acura成为了第一辆VTEC被装备的车可利用在美国。 VTEC可以被认为第一" 凸轮switching" 系统和当前也是其中一个仅一些在生产。 在1991年, Clemson大学研究员给予了专利被设计为入口和排气门独立地提供连续地易变的阀定时在一个唯一凹轮轴汇编的Clemson凹轮轴。 这能力使适用于推杆和顶上的凸轮引擎应用。[3] 在1992被介绍VANOS系统的BMW中。 象它在步的日产NVCS系统(或阶段之内)可能为入口凸轮, VANOS系统提供时间变化不同因为它可能为总共三提供一附加步骤。 然后在1996极大提高放射管理,增加产品和扭矩的双Vanos系统被介绍了,并且提供更好虚度光阴的质量和燃料经济。 双重Vanos是可能提供电子上控制的第一个系统,入口和排气门的连续的时间变化。 在2001被介绍Valvetronic系统的BMW中。 Valvetronic系统是独特的因为它可能连续地变化进气阀推力,除计时入口和排气门的之外。 系统有在进气阀的精确控制考虑到入口充电由进气阀完全地控制,消灭需要对于调整阀和很大地减少抽损失。 抽的损失帐户的减少更多的比在功率输出和燃料经济的10%增量。 在1998年福特开始使用易变的凸轮时间为福特斯格码引擎。 福特在2004式样该年成为了使用易变的阀定时的第一位制造商在一辆卡车,与畅销的福特F系列。 使用的引擎是5.4L 3阀门氚核。 在被提供的2005通用汽车公司中推杆V6引擎的, LZE和LZ4第一个易变的阀定时系统。 在2007年DaimlerChrysler成为了生产的第一位制造商凸轮在阻拦与尾气凸轮时间独立控制的引擎相对入口。 2008推托蛇蝎用途Mechadyne' 帮助的s同心凹轮轴汇编促进功率输出到600 bhp (450 kW)。 2009年菲亚特Powertrain技术介绍了在日内瓦汽车展示会的Multiair系统。 Multiair是一个水力开动的易变的阀定时系统,给对阀门推力和时间的完全控制。 新技术将是可利用的在阿尔法罗密欧・水户从2009年9月开始。[4
作者: uchihajim    时间: 2009-7-7 11:32 PM
编辑] VVT实施零部件市场修改-常规水力挺杆可以被设计为阀门开头和期间的易变的减少迅速地流血下来。 阿尔法罗密欧 双胞胎凸轮-有些版本用易变的阀定时技术装备。 双胞胎火花-用易变的阀定时技术装备。 JTS -用易变的阀定时技术装备,入口和尾气。 Multiair通过改变油压连续地变化吸入阀的时间。 BMW Valvetronic -为进气阀提供连续地易变的推力; 使用与双重VANOS一道。 VANOS -通过转动凹轮轴变化入口时间关于齿轮。 双重VANOS -连续地变化入口和排气门的时间。 菲亚特 " StarJet" 基于火的引擎。 福特 VCT易变的凸轮时间-通过转动凹轮轴变化阀定时。 与用于福特斯格码引擎和福特Duratec引擎的二个充分地易变的凹轮轴的钛VCT双胞胎独立变量凹轮轴。 克莱斯勒-通过Mechadyne使能双重独立入口或在2008推托蛇蝎的排气门调整发展的使用同心凹轮轴变化阀定时。 通用汽车公司公司(GM) VVT -连续地变化阀定时在入口和尾气的RPM范围中在顶上的阀门和顶上的凸轮引擎应用的被改进的表现的。(也参见Northstar系统)。 DCVCP (逐步采用双重连续的易变的凸轮) -连续地变化入口和尾气凹轮轴时间与水力翻板类型phaser (也参见Ecotec LE5)。 Alloytec -连续地逐步采用为入口凸轮的易变的凹轮轴。 连续地逐步采用为入口凸轮和尾气凸轮(高产Alloytec)的易变的凹轮轴。 本田 VTEC -通过交换变化期间、时间和推力二区别套凸轮耳垂之间。 VTEC-E -这个系统为改进燃料经济的目的单独地被设计。 VTEC机制的变异被用于少许创造垂距在二个进气阀之间的推力,一个阀门开头防止燃料的储积在进气口的。 进气阀的在一定条件下不对称的开头在燃烧箱创造一个强有力的漩涡并且考虑到非常精瘦的入口充电使用。 在正常运行之下二根进气阀摇杆一起被锁,并且两个阀门跟随正常推力凸轮外形。 i-VTEC -在高产DOHC 4圆筒引擎i-VTEC系统增加逐步采用连续的入口的凸轮(时间)到传统VTEC。 在一定条件下在被安置的经济SOHC和DOHC 4圆筒引擎i-VTEC系统通过延迟进气阀的关闭和通过使用一个电子上受控制调整阀减少增加引擎效率抽损失。 在SOHC V6引擎i-VTEC系统被用于提供在低需求操作时撤销3个圆筒一家银行的易变的圆筒管理。 先进的VTEC -这是最新的本田VVT系统并且是最独特的所有VTEC系统。 而不是在凸轮耳垂之间的开关先进的VTEC系统使用与一个易变的支点的中间摇杆连续地变化进气阀时间、期间和推力。 Hyundai MPI CVVT -变化力量、扭矩、排气系统和引擎反应。 川崎 -通过改变从而推进和减速阀定时, 2008年Concours的油压变化凸轮的位置14。 Lexus VVTiE -使用一台电作动器,连续地变化入口凹轮轴时间。 Mazda S-VT -不断地变化入口时间和曲柄角度使用ECU开动的油控制阀控制油压。 三菱 MIVEC -通过交换变化阀定时、期间和推力二区别套凸轮耳垂之间。 4B1引擎系列使用变化时间MIVEC的一个不同的变形(阶段)连续入口和尾气凹轮轴。 日产 N-VCT -变化仅凸轮的自转,不修改阀门的推力或期间。 VVL -通过使用二不同套凸轮耳垂,变化时间、入口和排气门的期间和推力。 CVTC介绍与HR15DE、HR16DE、(在2007) MR18DE和MR20DE新的引擎在日产Tiida和北美洲版本的2004年9月命名了日产Versa; 并且最后日产Sentra (在2007)。 在2007年VVEL介绍与VQ37VHR日产VQ引擎引擎在Infiniti G37。 堡侍捷 VarioCam -通过调整凸轮链子的紧张变化入口时间。 VarioCam加上-通过转动凸轮变化进气阀时间关于凸轮扣练齿轮以及期间,入口的时间和推力和排气门通过交换二区别套凸轮耳垂之间。 氢核Campro CPS -通过交换变化进气阀时间和推力在2套凸轮耳垂之间没有使用摇杆在多数易变的阀定时系统。 开张在2008年氢核Gen2 CPS [5] [6]和2008年氢核Waja CPS。 PSA Peugeot Citro&euml;n CVVT -连续的易变的阀定时。 Renault Clio 182, Clio杯子和Clio V6 Mk2 VVT -易变的阀定时。 流浪者 VVC -变化与一个异常圆盘的时间。 铃木 - VVT -铃木M引擎 Subaru AVCS -变化时间(阶段)有液压,使用在涡轮增压和六圆筒Subaru引擎。 AVLS -通过交换变化期间、时间和推力二区别套凸轮耳垂之间(相似与本田VTEC)。 使用由非涡轮增压的Subaru引擎。 丰田 VVT -丰田4AGE 20阀门引擎在1992年花冠GT版本的被介绍的VVT。 VVT-i -连续地变化入口凹轮轴的时间或者入口和尾气凹轮轴(根据应用)。 VVTL-i -连续地变化进气阀的时间。 通过交换变化期间、入口和排气门的时间和推力二区别套凸轮耳垂之间。 大众 小组- VVT介绍与1.8t引擎的最新修正和30v 2.8l V6。 类似VarioCam,入口时间故意地跑先进,并且减速点由ECU计算。 水力张力减速入口时间。 多数现代VW在他们的V6、V-8和V10引擎编组汽油机现在包括在或者入口凸轮的VVT或者入口和尾气凸轮。 Volvo - CVVT Yamaha - VCT (易变的凸轮时间)变化从而推进和减速阀定时的凸轮的位置。 氢核 -在Waja介绍的VVT 1.8' s F4P renault引擎(丰田提供VVT给renault)
作者: uchihajim    时间: 2009-7-7 11:33 PM
搞定了,其他的帮不到你了
还没看完,但知道是讲Engine的....
看到比较明白是VVT和Vtec
作者: 3-SGTE    时间: 2009-7-7 11:43 PM
原帖由 uchihajim 于 2009-7-7 11:33 PM 发表
搞定了,其他的帮不到你了
还没看完,但知道是讲Engine的....
看到比较明白是VVT和Vtec

谢谢

作者: Hauking    时间: 2009-7-7 11:52 PM
哇~原来是这样的~
我有点小明白了~
作者: 3-SGTE    时间: 2009-7-7 11:52 PM
原帖由 Hauking 于 2009-7-7 11:52 PM 发表
哇~原来是这样的~
我有点小明白了~

小明白
作者: Hauking    时间: 2009-7-7 11:54 PM
哈哈~就是明白了啦!
辛苦你了哦~
作者: 3-SGTE    时间: 2009-7-7 11:56 PM
原帖由 Hauking 于 2009-7-7 11:54 PM 发表
哈哈~就是明白了啦!
辛苦你了哦~

谢谢em0068 em0068 em0068
作者: Hauking    时间: 2009-7-7 11:57 PM
呵呵~不用谢~
你对车很了解哦???
作者: 3-SGTE    时间: 2009-7-7 11:59 PM
原帖由 Hauking 于 2009-7-7 11:57 PM 发表
呵呵~不用谢~
你对车很了解哦???

不会咯,一点点罢了em0051
作者: Hauking    时间: 2009-7-8 12:00 AM
标题: 回复 #36 3-SGTE 的帖子
呵呵~真的吗?
你的一点事多少点??
作者: 3-SGTE    时间: 2009-7-8 12:02 AM
原帖由 Hauking 于 2009-7-8 12:00 AM 发表
呵呵~真的吗?
你的一点事多少点??

自己猜
作者: Hauking    时间: 2009-7-8 12:11 AM
应该你很厉害的咯~
只是你扮猪吧了!
em0023 em0023
作者: 千叶    时间: 2009-7-8 12:37 PM
( ⊙o⊙ )哇
看到两位有心人士
热血为引擎区贡献
值得嘉奖~
可惜我只是会员
不能为你们加分
但是还是掌声鼓励鼓励
干得好~em0020
作者: 3-SGTE    时间: 2009-7-8 05:49 PM
原帖由 千叶 于 2009-7-8 12:37 PM 发表
( ⊙o⊙ )哇
看到两位有心人士
热血为引擎区贡献
值得嘉奖~
可惜我只是会员
不能为你们加分
但是还是掌声鼓励鼓励
干得好~em0020

谢谢哦em0068 em0068 em0068
作者: 毛毛小子    时间: 2009-7-8 06:23 PM
标题: 回复 #41 3-SGTE 的帖子
千叶乃爱车一族前前前版主......
作者: 3-SGTE    时间: 2009-7-8 06:30 PM
原帖由 毛毛小子 于 2009-7-8 06:23 PM 发表
千叶乃爱车一族前前前版主......

真的吗em0010 em0010 怎么现在不做版主了呢em0010 em0010
作者: 毛毛小子    时间: 2009-7-8 07:02 PM
标题: 回复 #43 3-SGTE 的帖子
当然是真的咯,我还没有来这里的时候他就已经是红彤彤的版主了
作者: 千叶    时间: 2009-7-8 08:03 PM
原帖由 3-SGTE 于 2009-7-8 06:30 PM 发表

真的吗em0010 em0010 怎么现在不做版主了呢em0010 em0010



故事很长
被炒鱿鱼~
离开了发现还好离开了~
现在还挺不错的说~em0100
作者: 千叶    时间: 2009-7-8 08:04 PM
原帖由 毛毛小子 于 2009-7-8 06:23 PM 发表
千叶乃爱车一族前前前版主......



有那么多个前咩?
我之后的都还有在丫
不要讲到很像我是上个世纪的版主样
作者: uchihajim    时间: 2009-7-8 09:02 PM
原帖由 千叶 于 2009-7-8 20:04 发表



有那么多个前咩?
我之后的都还有在丫
不要讲到很像我是上个世纪的版主样



讲到好像过气版主em0023
作者: 千叶    时间: 2009-7-8 09:13 PM
原帖由 uchihajim 于 2009-7-8 09:02 PM 发表



讲到好像过气版主em0023



的确是有点过期了啦
总好过不对还射人吧~
当版主的第一个坏处
没法跟会员沟通
被炒鱿鱼了才有机会跟大家38
不然很难的啦
作者: 3-SGTE    时间: 2009-7-8 09:29 PM
原帖由 千叶 于 2009-7-8 09:13 PM 发表



的确是有点过期了啦
总好过不对还射人吧~
当版主的第一个坏处
没法跟会员沟通
被炒鱿鱼了才有机会跟大家38
不然很难的啦

是在哪的版主,这里的吗em0010
作者: 毛毛小子    时间: 2009-7-8 09:38 PM
标题: 回复 #46 千叶 的帖子
哈哈哈,我只是把你夸张化吧了啦,别生气.....>"<
之前我也记得你在做版主时候几乎是很少出现过....^_^
现在可好了。。。
谁炒你鱿鱼??KENNY ?
作者: uchihajim    时间: 2009-7-8 09:56 PM
原帖由 千叶 于 2009-7-8 21:13 发表



的确是有点过期了啦
总好过不对还射人吧~
当版主的第一个坏处
没法跟会员沟通
被炒鱿鱼了才有机会跟大家38
不然很难的啦


没办法em0041 版主要守纪律嘛em0041
作者: 千叶    时间: 2009-7-8 10:04 PM
原帖由 3-SGTE 于 2009-7-8 09:29 PM 发表

是在哪的版主,这里的吗em0010



JBT爱车
作者: 千叶    时间: 2009-7-8 10:06 PM
原帖由 毛毛小子 于 2009-7-8 09:38 PM 发表
哈哈哈,我只是把你夸张化吧了啦,别生气.....>"<
之前我也记得你在做版主时候几乎是很少出现过....^_^
现在可好了。。。
谁炒你鱿鱼??KENNY ?





肯尼不会这样对我的em0032
作者: 千叶    时间: 2009-7-8 10:07 PM
原帖由 uchihajim 于 2009-7-8 09:56 PM 发表


没办法em0041 版主要守纪律嘛em0041



版主会经常被射的
很可怜的em0027
作者: 毛毛小子    时间: 2009-7-8 10:53 PM
标题: 回复 #54 千叶 的帖子
哈哈
可是以前我都没有射过你......
我经常看到很多流氓上来jbtalks然后在那里射来射去,炮来炮去...

PS: 楼上我不是有些你是爱车一族版主了吗?怎么还有人问=="
作者: uchihajim    时间: 2009-7-8 11:04 PM
原帖由 千叶 于 2009-7-8 22:07 发表



版主会经常被射的
很可怜的em0027


明白明白
作者: 3-SGTE    时间: 2009-7-8 11:15 PM
原帖由 千叶 于 2009-7-8 10:04 PM 发表



JBT爱车

嗯嗯,明白了。
作者: LiNeaR_PoWeR    时间: 2009-7-9 01:34 AM
极品!!!
太好了。。。
我喜欢
作者: wb-chen    时间: 2009-7-9 11:50 AM
原帖由 千叶 于 2009-7-8 10:07 PM 发表



版主会经常被射的
很可怜的em0027

做版主有工钱的吗?em0010
作者: 千叶    时间: 2009-7-9 12:27 PM
原帖由 毛毛小子 于 2009-7-8 10:53 PM 发表
哈哈
可是以前我都没有射过你......
我经常看到很多流氓上来jbtalks然后在那里射来射去,炮来炮去...

PS: 楼上我不是有些你是爱车一族版主了吗?怎么还有人问=="



久远的故事就让它过去吧
要知道team吸吸已经是很遥远的故事了
作者: 千叶    时间: 2009-7-9 12:29 PM
原帖由 wb-chen 于 2009-7-9 11:50 AM 发表

做版主有工钱的吗?em0010



贴钱~
加买我以前家里不能上网
去坛主的CC送钱给他帮他管~~em0023 em0023 em0041
回想起来
我那是还真笨呐~em0046
作者: 毛毛小子    时间: 2009-7-9 02:58 PM
标题: 回复 #60 千叶 的帖子
哈哈,也对啦
不好的回忆不值得一提
现在可好啦,你自由自在的
想上来就上来
作者: wb-chen    时间: 2009-7-9 03:11 PM
原帖由 千叶 于 2009-7-9 12:29 PM 发表



贴钱~
加买我以前家里不能上网
去坛主的CC送钱给他帮他管~~em0023 em0023 em0041
回想起来
我那是还真笨呐~em0046

这样都可以
没钱?为什么这么多人去应征做版主?em0010
作者: 3-SGTE    时间: 2009-7-9 05:18 PM
原帖由 LiNeaR_PoWeR 于 2009-7-9 01:34 AM 发表
极品!!!
太好了。。。
我喜欢

3Qem0068 em0068
作者: 千叶    时间: 2009-7-9 05:33 PM
原帖由 毛毛小子 于 2009-7-9 02:58 PM 发表
哈哈,也对啦
不好的回忆不值得一提
现在可好啦,你自由自在的
想上来就上来



现在的废话很多
玩论坛就是要讲话才有乐趣
现在的体会比较好
作者: 千叶    时间: 2009-7-9 05:35 PM
原帖由 wb-chen 于 2009-7-9 03:11 PM 发表

这样都可以
没钱?为什么这么多人去应征做版主?em0010



现在的就不懂啦
以前都是响应号召而去的
为建设JBT嘛~
虽然很多人觉得我在JBT没什么建设
肯尼才有建设~
O(∩_∩)O哈!em0046
作者: 3-SGTE    时间: 2009-7-9 05:47 PM
原帖由 千叶 于 2009-7-9 05:35 PM 发表



现在的就不懂啦
以前都是响应号召而去的
为建设JBT嘛~
虽然很多人觉得我在JBT没什么建设
肯尼才有建设~
O(∩_∩)O哈!em0046

不过现在的版主也未必好当对吗em0010
作者: 毛毛小子    时间: 2009-7-9 06:32 PM
标题: 回复 #66 千叶 的帖子
呵呵。。。。
我的注册日期也不会很新啊.....
我很早就知道JBTALKS了。。
以前是http://jbtalks.com
作者: 千叶    时间: 2009-7-9 07:10 PM
原帖由 3-SGTE 于 2009-7-9 05:47 PM 发表

不过现在的版主也未必好当对吗em0010



嘿嘿~
我不知道
这个你就要问现任的版主了呀~
作者: 千叶    时间: 2009-7-9 07:11 PM
原帖由 毛毛小子 于 2009-7-9 06:32 PM 发表
呵呵。。。。
我的注册日期也不会很新啊.....
我很早就知道JBTALKS了。。
以前是http://jbtalks.com



嗯...
是呀...
被人家注册掉了~
作者: 3-SGTE    时间: 2009-7-9 10:01 PM
原帖由 千叶 于 2009-7-9 07:10 PM 发表



嘿嘿~
我不知道
这个你就要问现任的版主了呀~

这个就不必了咯。听你说都知道了
作者: uchihajim    时间: 2009-7-9 10:05 PM
为什么聊了这么多离题的话题的em0012
作者: 3-SGTE    时间: 2009-7-9 10:11 PM
原帖由 uchihajim 于 2009-7-9 10:05 PM 发表
为什么聊了这么多离题的话题的em0012

因为没人要聊Variable Valve 啊
作者: uchihajim    时间: 2009-7-9 10:19 PM
原帖由 3-SGTE 于 2009-7-9 22:11 发表

因为没人要聊Variable Valve 啊



你的贴都讲完了,还可以聊什么
作者: 3-SGTE    时间: 2009-7-9 10:21 PM
原帖由 uchihajim 于 2009-7-9 10:19 PM 发表



你的贴都讲完了,还可以聊什么

疑问啦 疑问。。。
作者: uchihajim    时间: 2009-7-9 10:25 PM
原帖由 3-SGTE 于 2009-7-9 22:21 发表

疑问啦 疑问。。。



Variable Valve 多数用在什么车em0049
作者: 3-SGTE    时间: 2009-7-9 10:29 PM
原帖由 uchihajim 于 2009-7-9 10:25 PM 发表



Variable Valve 多数用在什么车em0049

多数的车都会用到了。几乎可以说是全部,这一两年出产的都算有吧
作者: 街头混混    时间: 2009-7-9 10:29 PM
原帖由 uchihajim 于 2009-7-9 10:25 PM 发表



Variable Valve 多数用在什么车em0049


应该是四个轮的车 
作者: uchihajim    时间: 2009-7-9 10:35 PM
原帖由 街头混混 于 2009-7-9 22:29 发表


应该是四个轮的车 


你在说废话哦
作者: uchihajim    时间: 2009-7-9 10:36 PM
原帖由 3-SGTE 于 2009-7-9 22:29 发表

多数的车都会用到了。几乎可以说是全部,这一两年出产的都算有吧

哦哦,明白明白....engine没什么去研究
作者: 3-SGTE    时间: 2009-7-9 10:38 PM
原帖由 uchihajim 于 2009-7-9 10:35 PM 发表


你在说废话哦

不要这样,大家都是学东西的
作者: uchihajim    时间: 2009-7-9 10:40 PM
原帖由 3-SGTE 于 2009-7-9 22:38 发表

不要这样,大家都是学东西的


难道是两个轮的嘛
作者: 3-SGTE    时间: 2009-7-9 10:44 PM
原帖由 uchihajim 于 2009-7-9 10:40 PM 发表


难道是两个轮的嘛

很难说
作者: uchihajim    时间: 2009-7-9 10:45 PM
原帖由 3-SGTE 于 2009-7-9 22:44 发表

很难说


那你说哪个两轮的
作者: 3-SGTE    时间: 2009-7-9 10:46 PM
原帖由 uchihajim 于 2009-7-9 10:45 PM 发表


那你说哪个两轮的

你自己想 不想说了
作者: uchihajim    时间: 2009-7-9 10:50 PM
原帖由 3-SGTE 于 2009-7-9 22:46 发表

你自己想 不想说了



我想不到哦
作者: LiNeaR_PoWeR    时间: 2009-7-9 11:00 PM
honda 的摩多好像有vtec system
大型的 CB400 vtec
作者: uchihajim    时间: 2009-7-10 12:04 AM
原帖由 LiNeaR_PoWeR 于 2009-7-9 23:00 发表
honda 的摩多好像有vtec system
大型的 CB400 vtec



是吗em0025 对摩托沒研究em0025
谢谢你哦em0068
作者: 街头混混    时间: 2009-7-10 12:05 AM
原帖由 LiNeaR_PoWeR 于 2009-7-9 11:00 PM 发表
honda 的摩多好像有vtec system
大型的 CB400 vtec


听说 honda的 motor vtec 可以拉上12k rpm
作者: 毛毛小子    时间: 2009-7-10 12:12 AM
标题: 回复 #89 街头混混 的帖子
有很多大型Motorbike也是可以上到10k RPM
Yamaha R1, R6
Suzuki Hayabusa
Honda CBR1000
Aprilla 等等
我很久没有研究这些了
作者: LiNeaR_PoWeR    时间: 2009-7-10 01:00 AM


就是它了!
hyper vtec..
作者: 毛毛小子    时间: 2009-7-10 01:41 AM
标题: 回复 #91 LiNeaR_PoWeR 的帖子
这款啊?
不是很久了的啊?
我在很小的时候就看到了
400CC的
V缸引擎?
新加坡一大堆
作者: wb-chen    时间: 2009-7-10 03:21 PM
honda出船的engine也有vtec的! (四冲成的)em0012
作者: wb-chen    时间: 2009-7-10 03:23 PM
原帖由 LiNeaR_PoWeR 于 2009-7-10 01:00 AM 发表


就是它了!
hyper vtec..

不懂有没有出turbo的?
作者: LiNeaR_PoWeR    时间: 2009-7-10 05:05 PM


有!
honda cx500 turbo...
1980s
作者: wb-chen    时间: 2009-7-10 05:37 PM
标题: 回复 #95 LiNeaR_PoWeR 的帖子
老了一点啦!
现在的有吗?
作者: 3-SGTE    时间: 2009-7-10 06:38 PM
原帖由 LiNeaR_PoWeR 于 2009-7-10 05:05 PM 发表


有!
honda cx500 turbo...
1980s

哇。。。em0007 em0007 motor都放上来说了啊em0007 em0007
作者: wb-chen    时间: 2009-7-10 06:45 PM
标题: 回复 #97 3-SGTE 的帖子
反了!  反了!
作者: 3-SGTE    时间: 2009-7-10 06:47 PM
原帖由 wb-chen 于 2009-7-10 06:45 PM 发表
反了!  反了!

乱了乱了
作者: wb-chen    时间: 2009-7-10 07:07 PM
原帖由 3-SGTE 于 2009-7-10 06:47 PM 发表

乱了乱了

没乱啦! 也在说vtec呀 不过是二轮的!




欢迎光临 JBTALKS.CC (https://www.jbtalks.cc/) Powered by Discuz! X2.5